Experimental Evidence for Statistical Scaling and Intermittency in Sediment Transport Rates

نویسندگان

  • Arvind Singh
  • Kurt Fienberg
  • Douglas J. Jerolmack
  • Jeffrey Marr
  • Efi Foufoula-Georgiou
چکیده

Understanding bed load transport fluctuations in rivers is crucial for development of a transport theory and for choosing a sampling interval for “mean” transport rates. Field-scale studies lack sufficient resolution to statistically characterize these fluctuations, while laboratory experiments are limited in scale and hence cannot be directly compared to field cases. Here we use a natural-scale laboratory channel to examine bed load transport fluctuations in a heterogeneous gravel substrate under normal flow conditions. The novelty of our approach is the application of a geometrical/statistical formalism (called the multifractal formalism), which allows characterization of the “roughness” of the series (depicting the average strength of local abrupt fluctuations in the signal) and the “intermittency” (depicting the temporal heterogeneity of fluctuations of different strength). We document a rougher and more intermittent behavior in bed load sediment transport series at low-discharge conditions, transitioning to a smoother and less intermittent behavior at high-discharge conditions. We derive an expression for the dependence of the probability distribution of bed load sediment transport rates on sampling interval. Our findings are consistent with field observations demonstrating that mean bed load sediment transport rate decreases with sampling time at low-transport conditions and increases with sampling time at high-transport conditions. Simultaneous measurement of bed elevation suggests that the statistics of sediment transport fluctuations are related to the statistics of bed topography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction to ‘‘Experimental evidence for statistical scaling and intermittency in sediment transport rates’’

[1] In the paper ‘‘Experimental evidence for statistical scaling and intermittency in sediment transport rates’’ by A. Singh et al. (Journal of Geophysical Research, 114, F01025, doi:10.1029/2007JF000963, 2009), we performed a multiscale analysis of bed load sediment transport series collected in a large-scale experimental flume at the St. Anthony Falls Laboratory at the University of Minnesota...

متن کامل

Sediment Transport in Unsteady Flow Conditions

Sediment transport under unsteady flow condition is studied experimentally. In the first step, sediment transport under different steady flow conditions was measured and an empirical equation was derived for its calculation. In the next step, two continuous and three stepwise hydrographs were generated in the flume, and their sediment transport rate was measured. The continuous hydrographs were...

متن کامل

Uncertainties in Evaluation of the Sediment Transport Rates in Typical Coarse-Bed Rivers in Iran

Flow and sediment transport processes are different and more complex in coarse-bed rivers than in sand-bed rivers. The main goal of the present study is to evaluate different modes of sediment transport using different hydrometric and hydraulic methods, and to address the major uncertainties. Four river reaches were selected as representatives of coarse-bed rivers in the Northwest of Iran. A se...

متن کامل

Timescales of fluvial activity and intermittency in Milna Crater, Mars

Milna Crater, Mars (23.4S, 12.3W) exhibits signs of fluvial modification early in Mars history, including a large multi-lobed fan deposit cut by several sinuous valleys. We describe the past hydrologic conditions in Milna and the surrounding area, including a potential lake with a volume of 50 km 3. We also introduce new methods (i) to calculate the timescale of sediment deposition by consideri...

متن کامل

Intermittency and rough-pipe turbulence.

Recently, by analyzing the measurement data of Nikuradze [NACA Tech. Memo No. 1292 (1950)], it has been proposed [N. Goldenfeld, Phys. Rev. Lett. 96, 044503 (2006)] that the friction factor, f , of rough-pipe flow obeys a scaling law in the turbulent regime. Here, we provide a phenomenological scaling argument to explain this law and demonstrate how intermittency modifies the scaling form, ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009